123,233 research outputs found

    Kaleidoscopic light feedback for television systems

    Get PDF
    Technique generates special effects for broadcast television to study effects of light feedback on television systems. Signals are produced for tape recording, broadcasting, or displaying on black-and-white or color monitors. The patterns have from three to eight sides and expand, contract, or rotate at various speeds

    Insulated wire selections on the Apollo spacecraft and the lunar excursion module

    Get PDF
    Insulated wire selections on Apollo spacecraft and lunar modul

    Regionally applicable angular reflectance models

    Get PDF
    Determination of the angular variation of the reflected radiance field in order to infer the reflected component of the Earth radiation budget from medium or narrow field of view radiometer measurements is discussed. An average angular model applicable at 250 to 1000 km is presented and evaluated. The nature of the convergence of the radiance patterns to the regional means is also discussed. Radiances measured during summer Monex 1979, from Hudson Bay to Saudi Arabia, were averaged and then normalized by multiplying by pi and dividing by the scene-averaged reflected flux density. This casts the model into the inverse of the bidirectional reflectance normalization coefficient, which has the value of unity for an isotropic surface. The reflected component of the Earth's radiation budget is inferred to an accuracy of about 2.5%

    Computer aided processing using laser measurements

    Get PDF
    The challenge exists of processing the STS and its cargo through KSC facilities in the most timely and cost effective manner possible. To do this a 3-D computer graphics data base was established into which was entered the STS, payloads, and KSC facilities. The facility drawing data are enhanced by laser theodolite measurements into an as-built configuration. Elements of the data base were combined to study orbiter/facility interfaces payload/facility access problems and design/arrangement of various GSE to support processing requirements. With timely analysis/design utilizing the 3-D computer graphics system, costly delays can be avoided. Better methodology can be analyzed to determine procedures for cost avoidance

    Calculation of the microcanonical temperature for the classical Bose field

    Full text link
    The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to non-perturbative many-body effects.Comment: revtex4, 10 pages, 1 figure. v2: updated to published version. Fuller discussion of numerical results, correction of some minor error

    Analysis of potential helicopter vibration reduction concepts

    Get PDF
    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location

    The 3-D description of vertical current sheets with application to solar flares

    Get PDF
    Following a brief review of the processes which have been suggested for explaining the occurrence of solar flares we suggest a new scenario which builds on the achievements of the previous suggestion that the current sheets, which develop naturally in 3-D cases with gravity from impacting independent magnetic structures (i.e., approaching current systems), do not consist of horizontal currents but are instead predominantly vertical current systems. This suggestion is based on the fact that as the subphotospheric sources of the magnetic field displace the upper photosphere and lower chromosphere regions, where plasma beta is near unity, will experience predominantly horizontal mass motions which will lead to a distorted 3-D configurations of the magnetic field having stored free energy. In our scenario, a vertically flowing current sheet separates the plasma regions associated with either of the subphotospheric sources. This reflects the balanced tension of the two stressed fields which twist around each other. This leads naturally to a metastable or unstable situation as the twisted field emerges into a low beta region where vertical motions are not inhibited by gravity. In our flare scenario the impulsive energy release occurs, initially, not by reconnection but mainly by the rapid change of the magnetic field which has become unstable. During the impulsive phase the field lines contort in such way as to realign the electric current sheet into a minimum energy horizontal flow. This contortion produces very large electric fields which will accelerate particles. As the current evolves to a horizontal configuration the magnetic field expands vertically, which can be accompanied by eruptions of material. The instability of a horizontal current is well known and causes the magnetic field to undergo a rapid outward expansion. In our scenario, fast reconnection is not necessary to trigger the flare, however, slow reconnection would occur continuously in the current layer at the locations of potential flaring. During the initial rearrangement of the field strong plasma turbulence develops. Following the impulsive phase, the final current sheet will experience faster reconnection which we believe responsible for the gradual phase of the flare. The reconnection will dissipate part of the current and will produce sustained and extended heating in the flare region and in the postflare loops
    • …
    corecore